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Let y(¥) be a stationary mixing process and J (%) an /

approximation to a random impulsive process. Kurtz's {1] results on

approximation of a general semigroup by a Markov semigroup are used to
prove (weak and a similar type of) convergence of the solutions to (1.1)
and (1.2 to jumping diffusions. Previous results are generalized in
various ways. The case of unbounded y(*)

is also treated as is the
combined jump-diffusion case. Also,

a limit theorem for an integral
with respect to ;hpproximate white noise"

in terms of an It0 integral
is given.

The method has the advantages of generality and relative

ease of use.
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l. Introduction

In [1]), Kurtz gave some fairly genzral semigroup methods for
showing convergence of a sequence of non-Markov process to a Markov
process, either in the sense of weak convergence or in the sense of
convergence of finite dimensional distributions. Let y(*) denote
(a Euclidean space valued) right continuous strong mixing stationary
process. For each € > 0, define ye(t) = y(t/ez), and for suitable

F,G, define the process xe(') by

F(xﬁ yb)
y(t) € R™,

Khazminskii [2], Papanicolaou [3], Papanicolaou and Kohler (4] and
Blankenship and Papanicolaou [5] have all treated the problem of weak
convergence of xe(-) to a diffusion. The problem is, of course,
closely related to the original problem of Wong and Zakai [6]. 1In
this paper, Kurtz's results, (together with a technique exploited

in references [3] and [5]) will be used to get similar types of
results under conditions which are weaker.+ The method of proof

has the great advantage of being quite straightforward and easy to

use for both the diffusion and jump-diffusion cases.

We also treat limits of systems of the type

F(xe yE)
G ey £ .6 . &, &
Ry & repeer &GNy Y ) ® ); Hi(x()Ig ¢ o (1.2)
t >

where f Ji sds is an approximation to a pure jump process, and
0 ’

we obtain a limit which is a jumping diffusion.

+
References (2] and (3] allowed F and G to depend also on t.
At the expense of extra detail, this case could be handled by
our method.
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Sections 2 and 3 recapitulate Kurtz's method of proving con-
vergence of finite dimensional distributions and tightness, resp.
The results are recapitulated partly for the sake of self-containment,
and partly to state the precise form in which they are to be used.
Section 4 states the assumptions used in Section 5, which gives the
result for limits of (1.1) when y(:) 1is bounded, a restriction
also used in the past references. Theorem 3 gives a result which
is useful in approximating stochastic integrals with respect to a
Wiener process by ordinary integrals. Such results are needed for
identification and related problems (see Balakrishnan (8], [(9]). A
result on convergence of finite dimensional distributions for
unbounded y(°*) 1is given in Section 6, and tightness for unbounded
y(-) 1is proved in Section 7. Section 8 deals with the relatively
simple case where the input is an approximation to a random impulse
process, and (l1.2), an approximation to a jumping diffusion, is treated
in Section 9. The result in Sections 6 and 7 cover the much used
case where y(*) 1is a Gaussian diffusion.

A method similar to that of Section 5 is outlined in Section 4,
[3], for the problem of showing convergence of finite dimensional
distributions for the bounded y(*) case. The results there are
not in a particularly usable form, and actually require more
smoothness of F and G than needed here since partial differential
equation methods are ultimately used there. Here, we do not need to
solve or even to approximate solutions of partial differential
equations, but merely to check the action of certain operators on

smooth functions.

s
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2. Convergence of Finite Dimensional Distributions

Let (92,P, %) denote a probability space, { j?t}eanondecreasing

seguence of sub o-algebras of # L the space of progressively measurable
real valued processes f on [0,»), adapted to {_91} and such that

sup E|f(t)| <». Let £ and f be in . Dpefine the limit
=

n
"p-lim" by p-lim £ = f iff sEp s:p E‘fn(t)l < » and
E|f (t) - £(t)| - 0 for each t. For each s > 0, define the
n
operator 9(s): X +Y by 9 (s)f = function in < whose value

at t 1is the random variable ES’ f(t+s). There is a version which

is progressively measurable ([l], Appendix) and we always assume that
this is the one which is used. The %(s), s > 0, are a semigroup of
linear operators on <%. Let &% dencte the subspace of ¥ of
p-right continuous functions. If the limit p-lim [é (9 (s)f-£f)]
exists and is in .3%, we call it Af and sayszgat £ € 9@).

The operators Z(s) and A are analogous to the semigroup and weak

infinitesimal operator of a Markov process. Among the properties

to be used later is ((l], equation (1.9))

s ~ A
9I(s)f - £ = J g(t) Af dt, £ € D(A), (2.1a)
0

or, equivalently

*From [1], with slightly altered terminology. Sometimes we write f¢

and sometimes f(t) for the value of a process f at time t.
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s A
E @ f(t+s) - f(t) = I E_?. Af (t+1)d1; for each t > 0. (2.1b)
it - Sl -
€ £ : *
If, for some process 2 (°), ﬁi = o(% . ® £ t), we may write

t t o - Y 1
ﬁft, Ty and A for ,92, 9 (t) and A, resp. Let Cj and Co

denote the spaces of real valued functions on R" which vanish at «
and which are continuous and which have continuous partial derivatives
up to order i (and which also vanish at infinity), resp. Let ¢ and
Ci denote the sets of these functions which have compact support.

The following Theorem (a specialization of (1], Theorem 3.11) is
our main tool for dealing with (l1.1). Henceforth, unless otherwise
mentioned, ¢ » 0 replaces n » ® in p-lim.

Theorem 1. Let z‘(-) = xe('),yc(-), € > 0, denote a sequence

'
of R™™ valued right continuous processes, x(*) a (R"-valued)

Markov process with semigroup T, mapping Co into (a) and which is

strongly continuous (sup norm) on C4. For some A > 0 and dense set

D in (,, let Range (A-A{D) be dense in C, (sup norm,

A = infinitesimal operator of x(°*)). Suppose that, for each f ¢ D,

there is a sequence (£} of progressively measurable functions

adapted to { Vt} and such that

p-lim[£f° - £(x"(+))) = 0 (2.2)

p-1im[ASE"Y - Af(x“(*)] = oO. (2.3)

Then, if x“(0) » x(0) weakly, the finite dimensional distributions

of x (+) converge to those of x(-).

*

The o-algebras will often be completed, but the same notation
will be used.




Equations (2.2) and (2.3) are equivalent to (the limits are taken

for each t as ¢ =+ 0)

sup E[f (t) = £(x" (t))] <, BEJf (t) - £(x"(t)) | » 0 (2.2')
€, t

sup EJA“E (t) - Af(x"(t))]| < «, E|AYE (t) - Af(x"(£))] ~0. (2.3")
t~l
3. Tightness

Let y(+), y‘('). xt(-) denote the functions in the model (1.1)

t

or (l1.2). Let - and “i denote the (ocompleted) O(ys; s < t)

and o(y;, s < t). Write Et and E; for E and E resp.

T Fe'
Again, we describe results from (l1]. Let D™[0,~) denote the

space of Rm valued functions on [0,~) which are right continuous

on [(0,~) and have left hand limits on (0,~). Note that xe(-) 3

p™[0,~) w.p.l. Suppose that the finite dimensional distributions

of x (*) converge to those of a process x(:), where x(*) has

m
paths in D [(0,v) w.p.l. Then, as noted in (1], bottom of page 628,

L

(x'(«)} is tight in D™[0,~) if {(f(x"(+)))} is tight in D[0,~)

for each £ € C, (é is used there, but it can be replaced by+ 63.)

1t follows from (1], Theorem 4.20, that {f(xl(-))} is tight in D[0,~)

if x - Xq weakly and if, for each real T > 0, there is a random

variable \l(S) such that

EeY, (8) 2 By min{l, [£(xg, ) - £(x)1%), (3.1)

for all 0 Cet<T, O0<wuc< < 1, and

+ ; i S
or by any set of functions dense in ¢ in the sup norm.
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lim lim E YE(G) = 0. (3.2)
§+0 €0
In (1], p. 629, Kurtz suggests a method of getting the Ye(é)'
This method is developed in Lemma 1 and is used in the sequel. The

£ below will be obtained in the same manner as we will obtain the

>

f of Theorem 1. We have (||f|| = sup|f(x)]|)
X
€ = €y 12 € € €
Bl (xg, ) = £x01% < 2[[£]] |BSf(x, ) - £x0) |
4 (33)
€ € 2, E
+ lEtf (xt+u) - f (xt)l.

Lemma 1. Let f ¢ c3,and let there be a sequence {f°} in

-

where (f )" € 9(36). i = 1,2, and such that, for each real T > 0

there is a random variable M such that

sup|£°(t) - £(x)| » 0 w.p.l, as €+ 0 (3.4)
t<T

sup [AS(£° ()| <M, w.p.l, i=1,2. (3.5)
€>0,t<T

Then ({f(x (+))} is tight in D[0,™).

Proof. By (2.1)

i . u
€ p | € & Ea
Et(f (t+u)) ™ - (f (t)) = JOEtA

€ £%(t+1)) Lar,

from which (3.3) to (3.5) yield a 16(6) of the form (for the interval

[0,T7)) max{l, ¥} where




2 : . i

% = M6+ 5 sup|(£5(en?t - fl(x;)l,
i=1l t<T

.

where M is a random variable. Q.E.D.

4. Assumptions for Model (1l.1); Bounded y(-).

are continuous, and the first partial %

(Al) P er]) and G(*y*}
G and F,

and first and second x-partial derivatives of

resp., are continuous.

(A2) There is a constant M such that

[FGy) |+ [G0ay) | € mQslx]).

(Al) and (A2) assure the global existence of solutions to (1l.1).

(A3) y(+) is a right continuous, bounded stationary process and

EF(x,ys) = 0, each x.

There is a measurable function ¢(*) such that

sup |P(B,|B,) = P(B,)]| < p(1),
Bt 273 2'! =

where Bl € o(yu,u < t), 82 € o(yu, u>t+ 1. Let
J p(t)dt < o, (4.1)
0

(4.2) is weaker than the conditions on the mixing rates in [4].

. by (the subscript x denotes gradient)

pefine the operator A On ¢
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[ s )

w

Af (x) = EG'(x.ys)fx(x) + [
\]

. ): <

A 3
\ \
b, (x) =— f(x) + i Axiﬁx'

- 1 aX . ;
1 1 1,1

By (Al) and (A3), the integrals on the right exist. In fact, the
T

improper Lebesgue integral is absolutely convergent (i.e. | |[E( )ldt

) 0

. * ; 3 v
converges) uniformly in x . Furthermore, if f ¢ C° then Af(x)

continuously differentiable in x, and the gradient of Af(x) 1is the

function obtained by simply replacing the argument of E in (4.2)
by 1ts x-gradient. If this is done, then the improper Lebesgue

integral still is absolutely convergent, uniformly in x.

(Ad) A is the restriction to @2 of the strong infinitesima

18

i
operator of a strong Markov conservative (no finite
escape time) diffusion process x('), with semigroup T+
i maps  CJ into Co and is strongly continuous on Co

t

(AS) { ¥} is right continuous. 1l.e., F =N

Ql
O
gach t > 0.
A | \}‘ L .
(A6) The set (\=-A)C*“ 1g: g = (A=-A)f, £ ¢ C°} 1is dense in
C for some \ > 0.
0 ——

‘This follows readily from the strong mixing. It is also a con-
sequence of Billingsley (7], p. 170.by using EF(x,y.) 0, (4.1)
and the fact that the functions have bounded supportb(let s 4,
§ + « in (7], equation (20.23), with a proper identification
of &L,n there). We will use this and similar facts frequently in
the sequel.

dat EF'(x,ys)(F'(x,ys+l)fx(x))x. (4.2)

"

e e e i




Remark on (AS5). Let f €¢ C and let f denote e.ther Ff,Gf

of any of the g, or fi introduced below. Condition (A5) is
introduced only because we want E. . F(

i ,t+s+u) to converge to

€
xt+s
E;?(x;,t+u) in probability as s + 0. Many of the calculations in
Theorems 2 and 4 involve this type of right continuity together with

uniform integrability.

Remark on (A6). Some condition such as (A6) is required for

use of Theorem 1. Let Ac denote the strong infinitesimal operator
of T, acting on Co: Then (A6) is equivalent to Ac being the
closure of the operator A (of (4.2) acting on 62, or on 63,

since ¢’ is dense in &% in the norm L[], = sup(|£(x) | +
}fx(x)! + |fxx(x)|)). This condition does not seem :o be particularly
restrictive. We only remark that it holds in the two extreme cases:
(1) the bi(') and aij(-) in (4.2) are bounded, satisfy a uniform
Holder condition and a(-) 1is uniformly positive definite; (2) where
Tt maps Cj into Cé and is strongly continuous on Ci with
respect to the norm ]]f}lz defined above. (The same remarks were

made by Kurtz (1], p. 632.)

can
In case 2, we/actually consider T, as acting on the Banach
space Cé with norm I]fllz, and where f(x) and its first and

second derivatives go to zero as |x| » «, and modify (A4) accordingly.

In this case, the closure of the operator A (the domain of A is

a2 3 i St g .
C” here) is just the strong infinitesimal operator (of Tt) acting on its
. . 2
domain in Co. Suppose that there is a matrix valued o(-) such that
o(x)o'(x) = a(x), that (A4) holds (as modified above) and that

bi(')’ oij(-) are locally Lipschitz. Then (see remarks below on
bounding), it is enough to prove Theorem 2 under the additional condition

that bi(-), oij(-) are bounded and, for arbitrary N, arbitrarily




pr
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smooth out of the sphere SN of center 0 and radius N. Assume that
bi(-) and oij(-) have continuous first and second derivatives. Then

by the above remark on bounding, we can assume that the coefficients are
bounded on R". Then (Gikhman and Skorokhod (13], Chapter 8.4),

case (2) above holds. The conditions imposed are weaker than those

in (4] when F and G do not depend on t.

Remark on bounding the coefficients. Suppose af(x) = 0(x)0o'(x),

where tﬁ(') and cij(~) are locally Lipschitz continuous and x(°),

the diffusion with generator A, is conservative. Define

an N-truncation as follows. Let b?(~), GTj(') equal bi('),

be bounded on Rm, have bounded derivatives of any

NI
at least

desired order in the complement of SZN and be/as smooth in SZN - SN
v

Oij(')’

Yeésp., in S

as bi(-), Oij(-) are. Then the ItO process V(*) with coefficients
B d’;’j(-) is called an N-truncation of x(-) if the b(+)and oM (-)
can be obtained by a modification of F and G in RW—SN. N-truncations
always exist since we can multiply F and G by suitable smooth real valued

functions mf(x) and mg(x), resp., which equal unity in SN. We only need

i,

prove Theorem 2 and verify (A4) and (A6) for some N-truncation for each N.

The proof of the assertion will be omitted. It is essentially a note ﬂ
that the parts of xN(-) and x(*) up to the first escape from SN are
equal, and that the probability of escape from sN on an interval [0,T]

goes to zero as N + », for each fixed Xg Here, we suppose that x(-) are

defined with respect to the same Wiener process.

5. Proof of Weak Convergence; Bounded y(:) and (1.1)

The main job in using Theorem 1 is to get £° when f 1is given.

To do this, we use an idea exploited for a similar purpose in

Section 3 of [5] and in Section 4 of [3]). We look for functions of the

e T S s e ——



A

function of x and such that g(x,t)

for each x. At x = x;, y = y;, let

A € g g
X

of its first argument. Let ﬁ;g(x,t)

the moment that At = AL + AL. Then,
3 '

t >
A to f (x,t), and insist that

2

= Af(x,t) + O(e),

Theorem 2. Under (Al) to (A6),

m

i.e., & 1s A , but acting on q(xz,t)

[fx(x) + ufl (x,t) + € f (x -3 i L

Define operators A; and Ay as follows.

5 5 =3
1s a function of -

&;g(x,t) = c,))'((x,t)[g—(ié‘xl +

be

in order

+ (Lf (x,t) + ¢

xt(-)

form* £ (x,t) = £(x) + Lf (x,t) + €25 Rt ,

F(x )

2

and define fL(x:,t)

G(x,y)1; {5,

1s considered to be a function of its second argument only.

+ G(x,t)]

L
f2(x,t))

where equation (5.1') must determine both the operator A

the t;(x,t) and verify the conditions of Theorem 1.

’

1)

+

11

£ ey .

Let g(x,t) be smooth as a

g < €y

considered only a function

N
A g(x,t), but where g

Assume for

to use Theorem 1, we apply

g5l

and equations

yvielding the f;(x,t). In Theorem 2, we merely write down formulas for

converges weakly in

D [0,°) to the diffusion x(-), with initial condition

Proof.

proved, via Lemma 1. Henceforth, f

V2

¢ o
to work with C .

is a fixed element of

<3 y . :
Since C is dense in C in the norm

dimensional distributions, using Theorem 1.

0°

First (Parts 1 to 3) we prove convergence of finite

In Part 4 tightness is

23
Ce

[lfl\z, it is enough

*
For each x and

s f;(x,t) will be a function of

The discussion in this paragraph is purely formal.

—J--------u----IIllllllIIlIIIllIIllIIIIIIIIIEI=======::1uI‘

y;, s < t.
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Part 1. fi(x,t) is defined to be a solution (suggested by
(5.1')) to A‘f‘(x,t) = =g (x,yL)z —F'(x,yt)f (x). More precisely,
Y1 L ) £ Tx

define f;(t) = f;(xz,t), where

0 € &
fi(x.t) J Etgl(x’y(EE + s))ds (5.2)

o

m |+~
[ ¥]

Iogtgl(x'yus) as

(both forms will be used). The improper Lebesgue integral exists and

is bounded and absolutely convergent, uniformly in w,x and in t in

bounded sets, by the strong mixing (A3), and the facts that

EF(x,yS) = 0 and that g1 has compact x-support. Furthermore, there

are versions of f;(x,t) and f;(x;,t) which are progressively v
measurable.

We next show that f;:'(t) e 2(A%). We have

i

SEak : E.6, E €, €
A F - =
e () P éig [Etfl(xt+6't+6) fl(xt,t)]/s (5.3)

€

= -3 EE
p- lim [Et{fl("ua

E+8) - £5(xE, t+8)11/8
§+0 %
< E_E [ & {3
+ P ﬁi'S [E £ (Xg £48) = £)(x,t)1/8

if the limits exist and are in .Q%. It is easy to verify that the
= . . . . . 4 3 2
second limit exists, is in .2% and equals -gl(x:,yi)/ﬂ . Now,

f;(x,t) is differentiable in x. Indeed, |

1

£ == | B o
2 JoEtgl,x(x'yt+s)ds'

'x(x.t)

- m

€

TIEC (y:
0 tgl,x yt+s
t in bounded sets,as T » », This fact together with the representation

since J ) |ds converges uniformly in x, and in

L . n—— — R ——
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[ S C L t t
Eglf) (X0, g t46) = £1(x ,t+8)1/6 = (5.4)
8 i 1 F(x5 yc )
1 €, € € t+u'?t+u 5 €
: fo Egl£] L (Xe,u t+8)]" [ - +GXE, g1 Yeay! 19U

€ d ' .
and the facts that fl x s right continuous in the mean at t, and that
’

the integrand is zero out of a bounded x,y range, can be used
to show that the first limit on the right side of (5.3) exists, is in

;/b and equals (x = x;, y = yi)

[f;'x(x.t)]-[F(x.y)/i + G(x,y)) = A;fi(x,t)_ (5.5)

. € ;
Part 2, With x = X0 we will define fg(t) = f;(x,t), where

f;(x.t) is the formal solution to

et (5.6) {

= - &
Af, (x,t) g, (x,t) z

S Py £ L)+ ' (x,y ) £, () = AE(X)]

where A is defined in (4.2). More precisely, define f, by

1 (5.7)

€ . By +s)ds.
fz(x,t) e2 Jothz(x,t s)ds

There are versions Of f;(x,t) and f;(xi,t) which are progressively

measurable. We now ignore the G terms, for the difficulty lies with

the Ff; - term. The improper Lebesgue integral
. i
lEL (x,t+s) |ds of (5.7) converges absolutely, nniformly in  @,x

t92
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and in t in any bounded set, by the strong mixing property and the

definition of A. (Indeed,

To see this, note that (5.7)

o [
PO

this is the reason for

(without the G-terms) equals

S S £ t t
JO ds{EtF (x.yt+s)fl'x(x,t+s) - EF'(x,yt+S)f

1,

the choice of

x(x,t+s)}'

where the average value of the coefficient of ds 1s zero

{5.8)

(by

stationarity and the definition of A), and use the strong mixing

)

condition. In fact, using the change of variables s/t¢°

I -

can be seen from (5.8) and the strong mixing and compact x-support

of f; that lfg(t)l is bounded w.p.l, uniformly in x and W

in bounded t interval

differentiable in x.

s. Furthermore, gz(x,t)

In fact,

sentence above (5.4) also holds for 9, replacing 9,

)
lex(x,t) = L—2- J

o

- &
0htgz'x(x,t+s)ds.

Expression (5.3) holds with f; replacing f; if

~

exist and are in b’o.

limit in (5.3) exists, is in :{b and equals = gz(x,t)/tz

An argument similar to that leading to

limit in (5.3) exists,

replacing f;.

and

is continuously

the convergence assertion in the

the limits

Again, we readily verify that the second

is in

£?b and equals (5.5) with

Part 3. Now, we apply Theorem 1. Since

sup
t,e>

E(|f
0

L

1

()] + [f5(0) ) < =,

€
f2

(x = xt)-

(5.5) yields that the first

A.)

and

-~



L

we have

Now, calculate

e

+

-+

-

We now readily verify that p-lim[A“E" ~ Af(x"(-))] = o.

XS = Xnp
0 0

converge.

p-lim[f - £(x (*))] = 0.

t

15

€

ATE". By Parts 1 and 2, with x = Xeo ¥ 5 Yoo
(x,t) = A%E(x) + EA“EI(x,t) + PACES (x,t)

[Flx,¥) /€ + G(x.y)]'fx(x)

C-F Gy £ (0 /62 4 () /e + Glxy) ) TE] L (x,E) ]

L2[— l} (F'(x.y)f; x(x't) a1 G'(fo)fx(x) - Af(x)}

| >
(FP(x,y) /€ + G(x.y))'f; x(X.t))] =

AF(x) + elG' Oy f] (6, 8) + FU(x,y)Ey (X))

e%6" (x, )25 (%, 8).

(5.9)

Since

Theorem 1 implies that the finite dimensional distributions

Part 4. Tightness. For tightness, we use Lemma 1. Each f
can be approximated uniformly arbitrarily closely by an f ¢ 63.

by the Lemma and discussion preceeding it, we only need prove that

(E(x“()) )

fi.f; exactly as the f;,f; were constructed above, and define
£'(t) as above. Then f° and (£5)% are in 2(A%) and there is

a constant M

’ 3 A3 A3
is tight for each f e € . lLet £ € C

such that w.p.1l

and construct

¢

Thus,

e
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sup |ACCES (et <M, i=1,2,
E>0,w,t

sup|£°(t) - £(x"(t))| + 0, as & » O.
t

Thus, Lemma 1 implies that {f(xg(-))} is tight in D[0,®), Tor
each f ¢ é3; hence {xi(-)} is tight in Dm[o,w). The tightness,
together with the convergence of finite dimensional distributions

implies weak convergence. Q.E.D.

An approximation to an integral. In problems where changes of i

measure via Girsanov-like transformations are involved, such as occur
in some identification problems (Balakrishnan (8], [9]), we need to

t -
get limits of integrals such as zE = f q'(x;Xy:/e)ds,as € > 0.

- 0
"i z .
Let C denote the real valued functions on Rm+m +4 with compact
ot : : : ;

support, whose i h partial derivatives are continuous. Let

> ~ ~ ]
y; = J (y;/c)ds and uE = (xL,Yt,zL). Then u; s Rm+m 3 valued and

0

u = é(xe,ye) a % f‘(xc,yc),
l where
{
1 G(x,y) = (G(x,y),0,0)
f‘(x.y) = (F(x,y),y/q'(x)y).

S— —

| The remarks below (A6) all pertain here also.

. —

»—

F—

EEEEEEEEEE— e —————
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Theorem 3. Let q(+) satisfy the conditions on F(+) in

(Al)~(A2). Assume (Al) to (A6) where (A4) and (A6) hold for the

process u(*) and operator A defined on (% by

@K

Af (u) = EG'(x,yo)fu(u) + [ d[EF'(x.yo)(F'(x,yl)fu(u))u. ('S .10)

0
: '
Then u' (*) converges weakly in " e 1[0,*‘) o a(s) = (k(*),
— )
Yls),.202)), uy = (xo,0,0), a diffusion with generator A on ("
The process Yt is a Brownian motion with covariance R = 2[ Eytyédt.
0

Ito
The limit z(:) has the/;ggresentation (the expectation is over vy(-))

in terms of the limits x(-),Y(*)

xr

dz = q'(x)dy + II EF’(x,poq'(x)yl)xdl]dt. {S.13)
0

(The last term in (5.11) is the so-called correction term of the

limiting integral approximation.)

The proof of weak convergence of ut(-) to u(+*) 1is simply
an application of Theorem 2. Once the weak convergence is known,
then the representation (5.11) is not hard to get, and we omit the

details.

6. Unbounded y(+) and (1.1).

Our approach here will be only a little different from that in
Section 5. In order to avoid conditions which look overly complicated,

we specialize F(x,y) and G(x,y) to F(x)y and G(x), resp.




i oo N e

=T

Pore s e en
’ : '
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Assumptions. In this section, the convergence of finite dimensional

distribution is proved, and tightness is treated in the next section.
Owing to the unboundedness of y(-), it is convenient to artificially
bound the F and G. We do this by dealing with a seguence of
approximations to the original processes. The operator A 1is still

defined by (4.2).

(Bl) F(+) and its first and second order partial derivatives

are continuous.

(B2) G(*) and its first order partial derivatives are

continuous.

(B3) | 9&‘ (again completed) is right continuous, and so

is the stationary process vy(*), w.p.l. (See the remark

concerning (AS) .)

Define
€, 2 w"’ S r o= “.* ,
b Sl Jobtyt+sds' b [oLt)t+sds'

« o P % Y » 2+L‘ o
(B4) For some 0, s:p E(folhtyt+slds) < W,
Thus, v; and v, are well-defined.
(BS) Elytlz+p <« », gsome p > 0.
(B6) up E( mdstl“ v! - E K% l)2+p < ®, ome ¢ - 0

stp 0 ‘tyt*s t+s yt"’ﬂ t+s - ¢ o

' W ; t W x .
Note that BEy, . Ve,s ™ F¥p4s !oht+syt+s+udu [Ohytyt*ud“ and

does not depend on t or s, and is well-defined by (B4), (BS).




e
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Owing to the special form of F and G, there are locally
Lipschitz b(*) and o(‘) such that (see (4.2)) o(-)o'(+) = a(-).
See also the remarks on bounding below (A6). xN and xC'N(-)

denote the N-truncations of x(-) and xL(-).

(B7) For a sequence N » «, there are N-truncations which

satisfy (A4) and (A6).

Remark on assumptions (B3)-(B6). Let w(+) denote a vector

Brownian motion, Q a matrix with eigenvalues in the open left half

plane and let D and G be matrices. Define processes Y(+) and

y(+) Dby

dy QY dt + Ddw,

(6.1)

y(+) GY ().

Then (B3) to (B6) hold. In this case, we can let J?; and 51
measure Ys' s < t/tz, and Ys' s < t, resp., in all the foregoing.
~C,8

Then v, is proportional to Y_  and |E | < [Yylc,e 2", where the

t t

¢y are positive constants.

tYt+s

Theorem 4 deals with the convergence of finite dimensional

distributions.

Theorem_ 4. Under (Bl) to (B7) and the first sentence of (A4),

: . ; ” " : €
the finite dimensional distributions of x (-) converge to those

of x(-) with initial condition x as € »+ 0.

ol




20
Proof. If the finite dimensional distributions of xe'N(-)
converge to those of xN(-) (initial condition xo) as € » 0 for

a sequence N » =, then the conservative and the strong Markov
properties of (A4), (B7) yield the theorem. So we only need prove
convergence for a fixed N. Consequently, we may assume that F
and G are bounded and drop the affixes N.

The details are very similar to those of Theorem 2,

and we only make a few remarks. As before, define fi and f; by

€ e i € T
fl(t) - fl(xt't)' fz(t) = fz(xt't)l

€ . : '
where fi(x,t) is defined as in Theorem 2. These functions are

no longer bounded, but still sup Elfz(t)l < w, It is rather
t,€>0

straightforward to verify (in fact, easier than in Theorem 2 owing
to the special form of F(x,y) and G(x,y) here) via (Bl) to (B6),

: AT -
that f; e Q) and® take the same values as in Theorem 2.

Furthermore, the expectations of the absolute values of the coefficients
of € and g2 on the far right side of (5.9) are bounded, uniformly

in ¢. Also

sup E{Iﬁtf;(t)l + |f§(t)|} < ®,
t,e>0

Thus,

*

For example, to show that the expression for isf?(t) is in 5? ¢ we
- 4

note that the compact support of f and (B4) to (B6) imply unifgrm

integrability of the expression.

This, together with (B3) yields
p-right continuity.

|
|
|
|
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p-lim[£° - £(x(+))) = 0 and p-lim[Af" - Af(x"(-))] = 0,

from which the theorem follows, by Theorem 1. Q.E.D.

7. Tightness; Unbounded y (')

Oowing to the unboundedness, it is more difficult to prove
tightness via the method of Lemma 1. To avoid (what are at the
moment) awkward conditions, we suppose that y(.) satisfies (6.1).
Then the f°= can be explicitly evaluated and the proof is easy.

and that y ()
Theorem 5. Assume (Bl), (B2), (B7), the first sentence of (A4) / ¢

satisfies (6.1). Then (x%()} s tight and converges weakly to

x(*) as € + 0.
Remark. The tightness argument only uses the compact support

of £, (Bl)-(B2) and (6.1).

Proof. The method and notation of Lemma 1 and Theorem 2, Part 4,

w.ll be used here. We need to show that, for each T and each

(1) lim sup|f(x,) - £°(t)| =0 w.p.l
€+0 t<T

€, 2 >

(i) (£)" & SGHA)

(iii) TiIm sup|a®(£°(t))I] < =, 3 =1,2, w.p.1.
€+0 t<T

In our case, there is a matrix C0 such that
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€ s
fl(x.t) = IF(x)CoY(t/L )) fx(x)
qz(x,t) = {F(x)y(t/iz)}'{[F (x)COY(t/t—z)]'fx(x)\x
+ G (x)f (x) - A%

f;(x,t) is a quadratic form in the components of Y(t/tz) where
the coefficients are bounded differentiable functions of x with
compact support. Also, as is readily verifiable. (ft(t))2 € £2(RL), |

and Ri(fa(t))3,j = 1,2, have terms in powers of the components of

el M i

Y(t/nz) up to 2j+l. Thus, to verify (i) and (iii) it is enough

to verify that for each T > 0 ¢
|
: 413
lim sup €|Y(t/e%)|” =0 WP 3o (7.1)
€+0 t<T

Equation (7.1) holds since, for each & > 0, the Gaussianess,
stationarity, and special form (6.1) imply that there are finite
w.p.l w-functions ¢, and C, such that Fede)y < C1€l+ ¢, for
all ¢, w.p.l. Q.E.D.

8. An Approximate Jump Case; (1.2) With No ye(-) Term

Since the classical papers of Wong and Zakai [6]), the problem

of using It0 or other types of equations to approximately model

processes which are the solutions to ordinary differential equations has

received much attention; e.g., [3]-(5] and Sections 5 to 7 above.

.
pos

o 1
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Alternative approaches have been taken by McShane [10] and Sussmann
[11] who sought either a theory of integration or a differential
equation and a topology on the input functions so that the output
is a continuous function of the input. The differential equations
which were of the so-called Stratonovich form, which, in fact, are
precisely It0 equations with appropriate dynamic terms.

Little has been done when the input is an approximation to an
impulse (its integral is an approximation to a pure jump process ).
Marcus [12) has done some work along McShane's "belated integral"
point of view. This work [1l2] has some interesting aspects, but
also a number of shortcomings. The dynamics are rather special,
being (in part) analytic functions. This is a disadvantage in any
approximation theory, where robustness is a key word. Some heavy
lie algebra machinery was used, and the form of the results tended
to obscure the basic simplicity of the problem. Also, a very
particular impulse approximation was used (piecewise constant). In
this section, we take a simple minded but inherently natural and robust
approach, using pathwise approximations and limits. The limits being
either ordinary or stochastic differential equations with impulsive
or jump inputs.

Let ﬁ-i(ds*dy), i=1,...,k, denote a sequence of scalar

o
valued random measures and define %}t) = J J Q Ni(dSXda), where
0

Ni(-) is taken to be right continuous. The range of the jumps of

Ni(-) is a bounded set Ri' Each Ni(') is assumed to have a

finite number of jumps on each bounded interval w.p.l, and the




i
:
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probability is zero that different Ni(-) have simultaneous
jumps.
In this section, we deal with the equation
k

. € €
x, = G(x,) + 1} H,(x
t £ j=1 *

(=

€
15 (8 (8.1)

: > : _ , . .
where the input Ji(t) is an "approximation" to the impulse N; (t).
Figure 1 illustrates some ways in which an actual integrated input

t . .
f J?(s)ds might approximate an ideal integrated impulsive input Ni(t).
b
0

In the figure a jump of Y occurs at t =t With approximation (1),

0°
Ji(t) = Y/ on [to,t0+€]. Define Ki(x,y) to be such that

x + Ki(x,Y) is the solution to x = Hi(x)Y at t = 1, with Xg = X.

It is convenient to start with the vector of ideal integrated

€
€

from this, as indicated in Figure 1. When the parameter is ¢, we work

times
only with paths for which the interjump/of the vector {Ni(‘),

inputs N(*) ={Ni(-), i < k} and to get the actual inputs J

i=1,...,k} are > €. Obviously, this involves neglecting a set of

paths whose probability goes to zero as € + 0, and it has no effect

on the limiting process. Thus, for our "limit" results, only the case
of one input need be treated, and unless noted otherwise set k =1

and drop the indices i on J,N,H and K. Let N(*) Jjump Yj at
h

t = oj, its jt jump time. Define pi = JE/Yj on [0-,0j+€]' and

&

equal to zero out of L)[<B,0j+6] and define Pi==f§p:ds. Thus
j
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p - P = 1. Now (8.1) can be rewritten in the form

s = t | > -
= b(xt) + H(xt)Yjpt on loj,oj+L], (B8.2)

il

G(xp) otherwise.
The value of pL(-) can depend on the jump time and size and on the

state prior to the jump (and on the index 1 in case (8.1)).

Assumptions.

(C1) The G and “i are continuous.

(C2) There is one and ogly one solution to x = G(x), for

A v

: m ; ;
each xO an K for each T < =, the solution 1s

bounded on (0,T] wuniformly in bounded X, sets.

(c3) For each i, there is one and only one solution on (0,1]

to w = Hi(w)Y for each Y ¢ Ri and Wy € R™. This

solution is bounded, uniformly on bounded (wo,Y) sets.

(C4) There are real numbers me > 0, ML <« =, such that

€
m. < p (t) ¢ M_ on the [Uj:0j+tl intervals and p' (")

is continuous.

-~ t .
(C5) Let 0 < u (t), where uL(') is bounded and continuous
¥ i ‘

on (0,1] and fu'“(s)ds:n. Define w' () by

0
wio= G(wir o (t) + Hi(w)Y. For éach i, let w (') exist
and be bounded on [0,1) wuniformly on bounded (Y,wa)
sets and in (L,u‘(°), £ < LO} for some LO 5 Oie
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Remarks. (C2) implies that x(+) 1is continuously dependent on

X and (C3) implies that (for each 1) w(*) 1is continuously dependent

00
on wO.Y. (C2), (C3) and (C5) are partially redundant, but it seemed
easier to state the assumptions in this way.

Let w = H (W)Y and Wy * Wo- Then (C5) and (C3) imply that
lw“(t) - w(t)] » 0 as € » 0 uniformly on [0,1] and on bounded

(Y,wo) sets, and in {u((~)).
Theorem 6. Assume (Cl) to (C5). Let x(+) be defined by
t v —
Xy = X, K J G(xa)ds + ) f Ki(x -'“)Ni(d“‘ds)- (8.3)
0 i Ri s
Let xg = xo. Then for each T < &,
sup |x;-xt| + 0 as € » 0, w.p.l,
e T
|8
where T = (o, 11 - %)[oj,oj+c).

If the dimension m = 1, then x' (+) » x(+) in the Skorokhod

topology ([7], Section 14).

Remarks. (8.3) is the correct limit equation - the analog of
the Wong-Zakai or Stratonovich equation for the modelling of the

output of a system with approximate jump inputs. We do not quite
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have weak convergence or convergence in the Skorokhod metric for
almost all paths, unless the components of the solution to

w = Hi(w)Y are monotonic in (0,1] for each Y and wy To see why,
let m > 2. Then it is possible that w,(t), the first (or any other)
component, behaves as in Figure 2; i.e., it does not approach its
value at time 1 monotonically. Let Ni(-) jump Y at time o,

and suppose that there are no other jumps on the interval [o-¢€,0+¢].
For small ¢, the first component of the solution to (8.1) on

[o,0+r] 1is essentially a compression of the ([0,1] segment in

Figure 2 to the ([0,€] interval, together with a shift of ¢ in the
time origin. Owing to the non~-monotonicity, we cannot have weak
convergence - or pathwise convergence in the Skorokhod topology, since
in the limit, as € » 0, the compression of the curve in Figure 2 gives
a triple jump at time 0. Because of this, the assertions of

Theorems 6 and 7 are a little awkward.

A main feature of the theorem is the robustness of the result;

the limit does not depend on the precise form of the approximations

J;(-). Obviously, the interpolation need not be over only an

te-interval.

Proof. We need treat only one jump and one Hi term, owing

to the assumptions on Ni(°) and on the continuity with respect to
parameters implied by (C2), (C3) and (C5)'. So return to (8.2) with

04 set equal to zero.

We change the time scale. Define a monotone increasing function
t
on [0,e], 1(t) = 1 by di/dt = p; or 1(t) = J p;ds. Thus, 1(¢) = 1,
0

o
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and the inverse t(t) exists by (C4). Define z (1) = x (t(1)).
Then
[
a2 L) < g (uut(n + mEt ey, FAE ok (8.4}
where

(& -
W o= eyt = SR
z (0) = x"(0).
1
8
Now f p‘(l)dl = ¢ and W (+) satisfies the conditions in (CS5). Let v
0

| >

x“(0) » x(0) as € + 0. Then x (€) » K(x(0),Y) + x(0) as ¢ = 0.

This, together with the continuity conditions (C2), (C3), (C5) and

a concatenation of the argument, implies the theorem. Q.E.D.

9. The Jump-Diffusion Case (1.2); Bounded y (‘)

we now return to the full model (1.2). Owing to the possible
non-weak convergence of xL(-) » X(+) 1in the pure jump case, due to
the convergence problem at the jump times oj which was illustrated
in connection with Figure 2, the combined jump-diffusion case will be
treated by a 'piecing together'arqument. Here ﬁi(~), L% Yol
are independent Poisson random measures with rates \i > 0, jump

distributions Di(~) (with bounded support Ri) and are independent

of y(+). With A defined by (4.2), define the operator AJ on
A 2

c by




AfEG) = Af) LA f L2 (wey tt,0)) = E£(ed1D (da). (3.0

Let x(-) denote the jump-diffusion process whose infinitesimal

operator on 62 is AJ. Except for the non-convergence problem at

the jump points, xt(') will essentially converge weakly to x(*).

Set 04 = 0 and o0_= qth jump of the vector valued process
§ q
N(+*) = {N,;(~), 1 < k}]. Let the qth jump be a jump Ot N\‘ (+) and have
q
value Yq' Def ine xa to be the solution of (l.l1) with initial

condition X, and let x;(-)(q_:iu be the solution to (l.1) with initial
condition x°(0q+z), and where yt(oq+t+-) is used in lieu ot y‘(').

Let xq(-) denote the diffusion of Sections 4 and 5, with initial

condition X, if q = 0, and xq(O) - xq-l(oq_oq-l) +

' ¢ =0 ' 1 . i \ * 2
¢ kiq(xq—l( q q—l) Yq) in general We will need either (D1l) or (D2)
to replace (C5). Let Ai(Y) denote the operator on Cl functions

which is defined by (H (w)Y)' %W X

(D1) u‘(s)/n is bounded in s < 1 and ¢«. The functions F,

G and “i are bounded.

(D2) u(s)/¢ is bounded in s ¢ 1 and . Each A, (Y)(Y ¢ R))

conservat ive
is the strong infinitesimal operator of a (degenérate)’

Markov semigroup mapping (and strongly continuous on)

Co
into Co. Also (X-Ai(\'))é2 is dense in C0 for each

Y £ Ry and i, and same )\ > 0 (which can depend an Y and 1).

Theorem 7. Assume (Al) to (A6), (Cl), (C4) and either (Dl) and

(C3) or (p2). Then for each N, {x;('), q < N} converges to




{ 0

b | (xg(), g N) weakly in D™ 1(0,=).

Note. The remarks below (A6) apply here also.

“

Proof. Owing to the independence of N(-) and y(‘) and right
continuity of y(*), y(oj+£+~) has the properties of y(:). Due to

this independence, the independent increments property of N(-) and

the uniqueness and strong Markov property of the x(*) of Sections 4
and 5 we can use a "piecing together" method based on the following

assertion: Let a component N, 2 (*) Jjump Y at ¢t = 0, with no other

R
jumps on [o0-g,0+€E), and let xe(o) z ;c(o) + x(0) weakly as € » 0 and define

xL(-) for t € (0,0+€) by

~ ¢

G e ~E € 1 o B
X = G(xs.ys) b5 € F(XS'YS) + H

“g. &
s (xs)psY. {9.2)

*q

(x(0),Y),
Y

as t » 0. We will prove only the assertion, and the proof uses a

Then (to be proved) ic(o+n) converges weakly to i(o) + K

combination of the ideas in Theorems 2 and 6. For notational simplicity,
let 0 = 0 and drop the index Ql.

As in Theorem 6, change the time scale by defining 1(°) on

[0,€] and wS (+) by dt(t)/dt = po(t), wE(1) = x"(t(1)), where t(-)

is the inverse of 1T1(*). Then

> . - g '
T"dd 0 =gy oo+ 2 pet 0,y e

(9.3)

+HW (D))Y,  w(0) = x(0),
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where 151 =  [(pS(t(1))17! = at(1)/dT. We need only show that,

: weakly . .
for fixed Y, wt(l) converges/to x(0) + K(x(0),Y), the

value at t = 1 of the solution w(+) to w = H(wY, w(0) = x(0),
We will actually prove the stronger result of weak convergence
of wg(-) to w(*) in Dm[o,ll, for each fixed non~-random Y.

First, the proof under (D2) will be given. Using the method of

Theorem 2, let f € 62 and set uE(t) =0 and t(T) = £(1) = € for

t > 1 and define fl(w,l) by (T <1)

€ gl | o ’ € ; >
£, lw, 1) = P foEt(T)F (w,y (£(t+s)))u (t4s)f (wlds.

) = : used in
In the definition of T;' and AE, use FZ(T) just as F;' was / Sections 3 to 5.

set £°(1) = £(w (1)) + Efl(we(T),T). Then, it can readily be shown

that f(wE(I)) and fl(we(T),T) are in the domain of RE and that

INERES £2(w (1) (6w (1) ,y (£ (1)))u" (1)
€ & et G €
+ P (D,y (t(0)) ==t 4 HW (0)Y]

» £
Pt 0y e g wE ) L el w0,

which equals AY)E(WE(T)) + 0(€) (we dropped the Ql subscript on A(Y)).
This yields convergence of the finite dimensional distributions of
wc(-) to those of w(*), as in Theorem 2. Tightness is also proved
in the same way as done in Theorem 2, completing the proof under (D2).
ich we used in Theorem 2,
Note that the function f,, 6 “is not needed here.
Now, we prove the assertion under (Dl) and (C3).

In this case |w“(7)| is bounded uniformly in ¢ > 0 and

——————————————————————————

, -
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t <1 and w (0) + %(0) weakly. Thus {w (-)} is tight in

Cm[0.1] and so is the function with values

[ Fw (1),y (£(1))) + Gw (1),y (£(1)))u (1) 1dt.

ft w1

0 >

Consequently, drawing a convergent subsequence and indexing it also
€ :

by ¢t we have that w (°) converges weakly to a continuous

process w(+). By using a Skorokhod imbedding technique, we can

assume for our purposes that the convergence is w.p.l, uniformly

on bounded intervals and write

v vV E
w(v) = x(0) + J H(w(s))Yds + lim f L) pwf ),y e(nar. (9.4)
0 e /o

We wish to show that the limit in (9.4) iz zero w.p.l for each v.
If so, then since it is continuous w.p.l, it must be identical
zero w.p.l. Then, by the uniqueness (C3), w(+) = w(*) and the
proof will be concluded.

The limit equals

b AL T
lim J LD p@(n Ly e(n))ar
€ 0

by the continuity of F and boundedness of y(*). Let o > 0.
define ﬁd(t) = w(ma) on [ma,ma+a) for each integer m. The

3 C(I) — €
difference between the last limit and lim f E—g—— F(w (t),y (t(1)))dt
3 0
goes to zero as « + 0. Thus, we need only show that

e for each «,
| 53 ] F(G(ma),ye(t(t)))dt is zero w.p.l Now, by changing

mo +G
e =)

lim
€

the time scale back to the original one, the last limit equals

|

v E
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— €
F(w(mully (u)) du. Since ¢t(na) - 0 for each n as

lim
€ t(ma)
€ + 0, the results of Theorem 2 imply that this last limit is

Jt(ma+u)

zero w.p.l. Q.E.D.
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